Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Almeida, André Luiz Cerqueira; Melo, Marcelo Dantas Tavares de; Bihan, David Costa de Souza Le; Vieira, Marcelo Luiz Campos; Pena, José Luiz Barros; Del Castillo, José Maria; Abensur, Henry; Hortegal, Renato de Aguiar; Otto, Maria Estefania Bosco; Piveta, Rafael Bonafim; Dantas, Maria Rosa; Assef, Jorge Eduardo; Beck, Adenalva Lima de Souza; Santo, Thais Harada Campos Espirito; Silva, Tonnison de Oliveira; Salemi, Vera Maria Cury; Rocon, Camila; Lima, Márcio Silva Miguel; Barberato, Silvio Henrique; Rodrigues, Ana Clara; Rabschkowisky, Arnaldo; Frota, Daniela do Carmo Rassi; Gripp, Eliza de Almeida; Barretto, Rodrigo Bellio de Mattos; Silva, Sandra Marques e; Cauduro, Sanderson Antonio; Pinheiro, Aurélio Carvalho; Araujo, Salustiano Pereira de; Tressino, Cintia Galhardo; Silva, Carlos Eduardo Suaide; Monaco, Claudia Gianini; Paiva, Marcelo Goulart; Fisher, Cláudio Henrique; Alves, Marco Stephan Lofrano; Grau, Cláudia R. Pinheiro de Castro; Santos, Maria Veronica Camara dos; Guimarães, Isabel Cristina Britto; Morhy, Samira Saady; Leal, Gabriela Nunes; Soares, Andressa Mussi; Cruz, Cecilia Beatriz Bittencourt Viana; Guimarães Filho, Fabio Villaça; Assunção, Bruna Morhy Borges Leal; Fernandes, Rafael Modesto; Saraiva, Roberto Magalhães; Tsutsui, Jeane Mike; Soares, Fábio Luis de Jesus; Falcão, Sandra Nívea dos Reis Saraiva; Hotta, Viviane Tiemi; Armstrong, Anderson da Costa; Hygidio, Daniel de Andrade; Miglioranza, Marcelo Haertel; Camarozano, Ana Cristina; Lopes, Marly Maria Uellendahl; Cerci, Rodrigo Julio; Siqueira, Maria Eduarda Menezes de; Torreão, Jorge Andion; Rochitte, Carlos Eduardo; Felix, Alex.
Arq. bras. cardiol ; 120(12): e20230646, dez. 2023. tab, graf
Artículo en Portugués | LILACS-Express | LILACS, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1527794
2.
Nat Commun ; 14(1): 7216, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940670

RESUMEN

Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Linfocitos T CD8-positivos , Pulmón , Linfocitos T Citotóxicos
4.
Nat Immunol ; 24(5): 767-779, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37095375

RESUMEN

Sepsis arises from diverse and incompletely understood dysregulated host response processes following infection that leads to life-threatening organ dysfunction. Here we showed that neutrophils and emergency granulopoiesis drove a maladaptive response during sepsis. We generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 individuals) of the sepsis immune response that identified populations of immunosuppressive mature and immature neutrophils. In co-culture, CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ T cells. Single-cell multiomic mapping of circulating hematopoietic stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered granulopoiesis in patients with sepsis. These features were enriched in a patient subset with poor outcome and a specific sepsis response signature that displayed higher frequencies of IL1R2+ immature neutrophils, epigenetic and transcriptomic signatures of emergency granulopoiesis in HSPCs and STAT3-mediated gene regulation across different infectious etiologies and syndromes. Our findings offer potential therapeutic targets and opportunities for stratified medicine in severe infection.


Asunto(s)
Neutrófilos , Sepsis , Humanos , Hematopoyesis , Células Madre Hematopoyéticas , Regulación de la Expresión Génica
5.
Cardiovasc Res ; 119(7): 1524-1536, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-36866436

RESUMEN

AIMS: Recent studies have revealed a close connection between cellular metabolism and the chronic inflammatory process of atherosclerosis. While the link between systemic metabolism and atherosclerosis is well established, the implications of altered metabolism in the artery wall are less understood. Pyruvate dehydrogenase kinase (PDK)-dependent inhibition of pyruvate dehydrogenase (PDH) has been identified as a major metabolic step regulating inflammation. Whether the PDK/PDH axis plays a role in vascular inflammation and atherosclerotic cardiovascular disease remains unclear. METHODS AND RESULTS: Gene profiling of human atherosclerotic plaques revealed a strong correlation between PDK1 and PDK4 transcript levels and the expression of pro-inflammatory and destabilizing genes. Remarkably, the PDK1 and PDK4 expression correlated with a more vulnerable plaque phenotype, and PDK1 expression was found to predict future major adverse cardiovascular events. Using the small-molecule PDK inhibitor dichloroacetate (DCA) that restores arterial PDH activity, we demonstrated that the PDK/PDH axis is a major immunometabolic pathway, regulating immune cell polarization, plaque development, and fibrous cap formation in Apoe-/- mice. Surprisingly, we discovered that DCA regulates succinate release and mitigates its GPR91-dependent signals promoting NLRP3 inflammasome activation and IL-1ß secretion by macrophages in the plaque. CONCLUSIONS: We have demonstrated for the first time that the PDK/PDH axis is associated with vascular inflammation in humans and particularly that the PDK1 isozyme is associated with more severe disease and could predict secondary cardiovascular events. Moreover, we demonstrate that targeting the PDK/PDH axis with DCA skews the immune system, inhibits vascular inflammation and atherogenesis, and promotes plaque stability features in Apoe-/- mice. These results point toward a promising treatment to combat atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Animales , Humanos , Ratones , Aterosclerosis/genética , Factores de Riesgo de Enfermedad Cardiaca , Inflamación/genética , Ratones Noqueados para ApoE , Factores de Riesgo
6.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976644

RESUMEN

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Asunto(s)
Células T Asesinas Naturales , Humanos , Células Presentadoras de Antígenos , Lipoproteínas/metabolismo
7.
Am J Physiol Endocrinol Metab ; 324(4): E289-E298, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36812387

RESUMEN

Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle. In human tissues, SUCNR1 mRNA was associated with macrophage markers. Single-cell RNA sequencing and fluorescent RNAscope demonstrated that in human skeletal muscle, SUCNR1 mRNA is not expressed in muscle fibers but coincided with macrophage populations. Human M2-polarized macrophages exhibit high levels of SUCNR1 mRNA and stimulation with selective agonists of SUCNR1 triggered Gq- and Gi-coupled signaling. Primary human skeletal muscle cells were unresponsive to SUCNR1 agonists. In conclusion, SUCNR1 is not expressed in muscle cells and its role in the adaptive response of skeletal muscle to exercise is most likely mediated via paracrine mechanisms involving M2-like macrophages within the muscle.NEW & NOTEWORTHY Macrophages but not skeletal muscle cells respond to extracellular succinate via SUCNR1/GPR91.


Asunto(s)
Receptores Acoplados a Proteínas G , Ácido Succínico , Humanos , Músculos/metabolismo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Ácido Succínico/metabolismo
8.
Rev Port Cardiol ; 42(2): 149-155, 2023 02.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-36470575

RESUMEN

INTRODUCTION AND OBJECTIVES: Transesophageal echocardiography (TEE) is crucial in order to assess aortic anatomy after stroke. Although routinely used to assess cardiovascular anatomy and function, three-dimensional echocardiography (3D TEE) is less used for aortic evaluation. We thus sought to assess prospectively whether additional information on aortic plaque morphology could be obtained with 3D TEE after an ischemic stroke. METHODS: Patients within one week of a stroke (confirmed by brain computed tomography/magnetic resonance) underwent TEE and 3D findings were compared with two-dimensional (2D) (aorta plaque number, dimensions, area and the presence of debris and ulcerations). Patients were followed for two years for death or a new stroke. RESULTS: We assessed 78 patients, 43 (55%) male, aged 62±14 years old, 92% in sinus rhythm. Aortic atheroma was found mainly in the descending aorta (50%); plaque thickness was similar for 2D TEE (0.29±0.03 cm) and 3D TEE (0.29±0.04 cm), whereas plaque area was slightly increased for 3D measurements (0.24±0.02 cm2 versus 0.37±0.03 cm2 respectively, p<0.05), with a strong correlation found both for aortic plaque thickness (r=0.91) and area (r=0.80) measurements. While aortic debris were equally seen with both techniques, 3D TEE defines the presence of ulcerations (six ulcerations unseen with 2D TEE better, p=0.03). There were 11 events (six deaths and five new strokes) during follow-up, unrelated to plaque characteristics. CONCLUSION: To evaluate aortic plaque morphology, 3D TEE is superior to 2D TEE due to improved detection of ulcerated aortic plaque; this might provide additional information in patients after ischemic stroke.


Asunto(s)
Ecocardiografía Tridimensional , Accidente Cerebrovascular Isquémico , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Placa Aterosclerótica/diagnóstico por imagen , Ecocardiografía Transesofágica/métodos , Aorta , Ecocardiografía Tridimensional/métodos , Reproducibilidad de los Resultados
9.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478058

RESUMEN

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerosis/patología , Placa Aterosclerótica/patología
10.
Cardiovasc Res ; 119(5): 1146-1160, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35587037

RESUMEN

AIMS: CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signalling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-tumour necrosis factor receptor associated factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS: Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, was reduced in CD40mac-/- compared to CD40wt mice, and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses. Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206+CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1, and Tns1). CONCLUSIONS: We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Transducción de Señal , Aorta/patología , Antígenos CD40/genética
12.
Nat Cardiovasc Res ; 2(7): 656-672, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38362263

RESUMEN

The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.

13.
Arq Bras Cardiol ; 120(12): e20230646, 2023 Dec.
Artículo en Portugués, Inglés | MEDLINE | ID: mdl-38232246

RESUMEN

Central Illustration : Position Statement on the Use of Myocardial Strain in Cardiology Routines by the Brazilian Society of Cardiology's Department Of Cardiovascular Imaging - 2023 Proposal for including strain in the integrated diastolic function assessment algorithm, adapted from Nagueh et al.67 Am: mitral A-wave duration; Ap: reverse pulmonary A-wave duration; DD: diastolic dysfunction; LA: left atrium; LASr: LA strain reserve; LVGLS: left ventricular global longitudinal strain; TI: tricuspid insufficiency. Confirm concentric remodeling with LVGLS. In LVEF, mitral E wave deceleration time < 160 ms and pulmonary S-wave < D-wave are also parameters of increased filling pressure. This algorithm does not apply to patients with atrial fibrillation (AF), mitral annulus calcification, > mild mitral valve disease, left bundle branch block, paced rhythm, prosthetic valves, or severe primary pulmonary hypertension.


Figura Central : Posicionamento do Departamento de Imagem Cardiovascular da Sociedade Brasileira de Cardiologia sobre o Uso do Strain Miocárdico na Rotina do Cardiologista ­ 2023 Proposta de inclusão do strain no algoritmo integrado de avaliação da função diastólica, adaptado e traduzido de Nagueh et al. 67 AE: átrio esquerdo; Ap: duração da onda A reversa pulmonar; Am: duração da onda A mitral; DD: disfunção diastólica; FEVEr: fração de ejeção do ventrículo esquerdo reduzida; IT: insuficiência tricúspide; SAEr: strain do AE de reservatório; SLGVE: strain longitudinal global do ventrículo esquerdo. Se remodelamento concêntrico, confirmar com SLGVE. Na presença de FEVEr, tempo de desaceleração da onda E mitral (TDE) < 160 ms e onda S < D pulmonar também são parâmetros de pressão de enchimento aumentada. Esse algoritmo não se aplica a pacientes com fibrilação atrial (FA), calcificação do anel mitral ou valvopatia mitral maior que discreta, bloqueio de ramo esquerdo (BRE), ritmo de marca-passo, próteses valvares ou hipertensão pulmonar (HP) primária grave.


Asunto(s)
Fibrilación Atrial , Cardiología , Disfunción Ventricular Izquierda , Humanos , Ecocardiografía Doppler , Brasil , Fibrilación Atrial/diagnóstico por imagen , Atrios Cardíacos/diagnóstico por imagen , Función Ventricular Izquierda
14.
Front Cardiovasc Med ; 9: 991016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312230

RESUMEN

Introduction: Heart transplantation represents main therapy for end-stage heart failure. However, survival after transplantation is limited by development of graft rejection. Endomyocardial biopsy, an invasive and expensive procedure, is gold standard technique for diagnosis of rejection. Most of biopsy complications are observed using echocardiography. Novel echocardiographic techniques, such as myocardial strain and three-dimensional reconstruction, can be useful in heart transplant patients. Purpose: To evaluate ventricular strain in heart transplant patients and association with rejection, cellular or humoral, as well as two- and three-dimensional echocardiographic parameters. Methods: Cohort of patients from heart transplant program taken to echocardiography after endomyocardial biopsy, from December 2017 to January 2020. Ventricular strain and three-dimensional left ventricle parameters were studied. Rejection results were retrieved from medical record. Qualitative variables were expressed by absolute frequency and percentages, while continuous variables by means and standard deviations. Association between rejection and variables of interest was measured by odds ratio and confidence interval of 95%, with p-value < 0.05. Results: 123 post-endomyocardial biopsy echocardiographic exams were performed in 54 patients. Eighteen exams were excluded, lasting 105 exams to be evaluated for conventional and advanced echocardiographic parameters. Male patients were 60.4%. Prevalence of cellular rejection was 8.6%, humoral rejection 12.4%, and rejection of any type 20%. There was no association between right ventricular strain and rejection, whether cellular (p = 0.118 and p = 0.227 for septum and free wall, respectively), humoral (p = 0.845 and p = 0.283, respectively), or of any type (0.504 and 0.446). There was no correlation between rejection and left ventricle global longitudinal strain, three-dimensional ejection fraction or desynchrony index. Conventional parameters associated to rejection were left ventricle posterior wall thickness [OR 1.660 (1.163; 2.370), p = 0.005] and left ventricle mass index [OR 1.027 (1.011; 1.139), p = 0.001]. Left ventricle posterior wall thickness remained significant after analysis of cellular and humoral rejection separately [OR 1.825 (1.097; 3.036), p = 0.021 and OR 1.650 (1.028; 2.648), p = 0.038, respectively]. Conclusions: There was no association between ventricular strain, three-dimensional left ventricular ejection fraction and the desynchrony index and rejection, cellular or humoral. Evidence of association of graft rejection with left ventricle posterior wall thickness and left ventricle mass index was observed.

15.
J Am Heart Assoc ; 11(14): e024675, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35861840

RESUMEN

Background Adolescents with chronic disease are often exposed to inflammatory, metabolic, and hemodynamic risk factors for early atherosclerosis. Since postmortem studies have shown that atherogenesis starts in the aorta, the CDACD (Cardiovascular Disease in Adolescents with Chronic Disease) study investigated preclinical aortic atherosclerosis in these adolescents. Methods and Results The cross-sectional CDACD study enrolled 114 adolescents 12 to 18 years old with chronic disorders including juvenile idiopathic arthritis, cystic fibrosis, obesity, corrected coarctation of the aorta, and healthy controls with a corrected atrial septal defect. Cardiovascular magnetic resonance was used to assess aortic pulse wave velocity and aortic wall thickness, as established aortic measures of preclinical atherosclerosis. Cardiovascular magnetic resonance showed a higher aortic pulse wave velocity, which reflects aortic stiffness, and higher aortic wall thickness in all adolescent chronic disease groups, compared with controls (P<0.05). Age (ß=0.253), heart rate (ß=0.236), systolic blood pressure (ß=-0.264), and diastolic blood pressure (ß=0.365) were identified as significant predictors for aortic pulse wave velocity, using multivariable linear regression analysis. Aortic wall thickness was predicted by body mass index (ß=0.248) and fasting glucose (ß=0.242), next to aortic lumen area (ß=0.340). Carotid intima-media thickness was assessed using ultrasonography, and was only higher in adolescents with coarctation of the aorta, compared with controls (P<0.001). Conclusions Adolescents with chronic disease showed enhanced aortic stiffness and wall thickness compared with controls. The enhanced aortic pulse wave velocity and aortic wall thickness in adolescents with chronic disease could indicate accelerated atherogenesis. Our findings underscore the importance of the aorta for assessment of early atherosclerosis, and the need for tailored cardiovascular follow-up of children with chronic disease.


Asunto(s)
Coartación Aórtica , Enfermedades de la Aorta , Aterosclerosis , Rigidez Vascular , Adolescente , Coartación Aórtica/complicaciones , Enfermedades de la Aorta/complicaciones , Enfermedades de la Aorta/etiología , Aterosclerosis/etiología , Grosor Intima-Media Carotídeo , Niño , Enfermedad Crónica , Estudios Transversales , Humanos , Análisis de la Onda del Pulso , Rigidez Vascular/fisiología
16.
Eur Heart J ; 43(19): 1864-1877, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35567557

RESUMEN

AIMS: Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability. METHODS AND RESULTS: Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts. CONCLUSION: Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.


Asunto(s)
Aterosclerosis , Factores Reguladores del Interferón , Macrófagos , Placa Aterosclerótica , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Humanos , Inflamación/metabolismo , Factores Reguladores del Interferón/metabolismo , Macrófagos/inmunología , Ratones , Necrosis , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
17.
Int J Mol Sci ; 23(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35563591

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease that increases cardiovascular disease risk. Indoleamine 2,3-dioxygenase-1 (IDO1)-mediated tryptophan (Trp) metabolism has been proposed to play an immunomodulatory role in several diseases. The potential of IDO1 to be a link between NASH and cardiovascular disease has never been investigated. Using Apoe-/-and Apoe-/-Ido1-/- mice that were fed a high-fat, high-cholesterol diet (HFCD) to simultaneously induce NASH and atherosclerosis, we found that Ido1 deficiency significantly accelerated atherosclerosis after 7 weeks. Surprisingly, Apoe-/-Ido1-/- mice did not present a more aggressive NASH phenotype, including hepatic lipid deposition, release of liver enzymes, and histopathological parameters. As expected, a lower L-kynurenine/Trp (Kyn/Trp) ratio was found in the plasma and arteries of Apoe-/-Ido1-/- mice compared to controls. However, no difference in the hepatic Kyn/Trp ratio was found between the groups. Hepatic transcript analyses revealed that HFCD induced a temporal increase in tryptophan 2,3-dioxygenase (Tdo2) mRNA, indicating an alternative manner to maintain Trp degradation during NASH development in both Apoe-/- and Apoe-/-Ido1-/mice-. Using HepG2 hepatoma cell and THP1 macrophage cultures, we found that iron, TDO2, and Trp degradation may act as important mediators of cross-communication between hepatocytes and macrophages regulating liver inflammation. In conclusion, we show that Ido1 deficiency aggravates atherosclerosis, but not liver disease, in a newly established NASH and atherosclerosis comorbidity model. Our data indicate that the overexpression of TDO2 is an important mechanism that helps in balancing the kynurenine pathway and inflammation in the liver, but not in the artery wall, which likely determined disease outcome in these two target tissues.


Asunto(s)
Aterosclerosis , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Enfermedad del Hígado Graso no Alcohólico , Animales , Apolipoproteínas E , Aterosclerosis/genética , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares , Comorbilidad , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/genética , Quinurenina/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , Triptófano/metabolismo , Triptófano Oxigenasa/genética
18.
J Clin Ultrasound ; 50(5): 604-610, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35355290

RESUMEN

BACKGROUND: There is a paucity of information about Brazilian COVID-19 in-hospital mortality probability of death combining risk factors. OBJECTIVE: We aimed to correlate COVID-19 Brazilian in-hospital patients' mortality to demographic aspects, biomarkers, tomographic, echocardiographic findings, and clinical events. METHODS: A prospective study, single tertiary center in Brazil, consecutive patients hospitalized with COVID-19. We analyzed the data from 111 patients from March to August 2020, performed a complete transthoracic echocardiogram, chest thoracic tomographic (CT) studies, collected biomarkers and correlated to in-hospital mortality. RESULTS: Mean age of the patients: 67 ± 17 years old, 65 (58.5%) men, 29 (26%) presented with systemic arterial hypertension, 18 (16%) with diabetes, 11 (9.9%) with chronic obstructive pulmonary disease. There was need for intubation and mechanical ventilation of 48 (43%) patients, death occurred in 21/111 (18.9%) patients. Multiple logistic regression models correlated variables with mortality: age (OR: 1.07; 95% CI 1.02-1.12; p: 0.012; age >74 YO AUC ROC curve: 0.725), intubation need (OR: 23.35; 95% CI 4.39-124.36; p < 0.001), D dimer (OR: 1.39; 95% CI 1.02-1.89; p: 0.036; value >1928.5 ug/L AUC ROC curve: 0.731), C-reactive protein (OR: 1.18; 95% CI 1.05-1.32; p < 0.005; value >29.35 mg/dl AUC ROC curve: 0.836). A risk score was created to predict intrahospital probability of death, by the equation: 3.6 (age >75 YO) + 66 (intubation need) + 28 (C-reactive protein >29) + 2.2 (D dimer >1900). CONCLUSIONS: A novel and original risk score were developed to predict the probability of death in Covid 19 in-hospital patients concerning combined risk factors.


Asunto(s)
COVID-19 , Mortalidad Hospitalaria , Anciano , Anciano de 80 o más Años , Biomarcadores , Brasil/epidemiología , Proteína C-Reactiva , COVID-19/diagnóstico , COVID-19/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Curva ROC , Estudios Retrospectivos , Factores de Riesgo
19.
Nat Rev Cardiol ; 19(8): 522-542, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35102320

RESUMEN

Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Placa Aterosclerótica , LDL-Colesterol , Humanos , Inflamación
20.
Nat Commun ; 13(1): 215, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017526

RESUMEN

Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+ Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/genética , Vasos Sanguíneos/metabolismo , Lectinas Tipo C/genética , Macrófagos/metabolismo , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/metabolismo , Aterosclerosis/patología , Vasos Sanguíneos/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Muerte Celular/genética , Diferenciación Celular , Linaje de la Célula/genética , Colesterol/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Homeostasis/genética , Humanos , Lectinas Tipo C/deficiencia , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Monocitos/patología , Transducción de Señal , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...